2009 DOE HYDROGEN PROGRAM and VEHICLE TECHNOLOGIES PROGRAM ANNUAL MERIT REVIEW and PEER EVALUATION MEETING BLOCK SCHEDULE | | | | onday | | 18 |-------|---|---------|---------|---------|--------|--------|-----------------------------|--------|---------|--|------------|----------|---|----------|---------|----------------------------|----------|----------|---------|-----------|------------|---------|------| | 1:00 | | ry Ses | ssion S | Starts | 3:45 | Break | 4:15 | | ry Res | 5:45 | | wer O | | | | 3 | | | | | | | | | | | | | | | | | | | 6:00 | | r Sess | | | , | nology | Valid: | ation, | Syste | ms | Analy | 'SiS | | | | | | | | | | | | | | | | | Sched | ule as o | f: 1 | 7-Mar- | 09 | | | | | | | | | | | Crv | /sta | I Ga | tewa | v Ma | arrio | tt Ho | otel | | | | | | | | | | | Tu | esday | , May | 10 | | | Wor | - | /stal Gateway Marriott Hotel ay May 20 Thursday May 21 | | | | | Frid | ay May | 22 | | | | | | | | Salon | | II | III | IV | V | VI | | | | VI | | | II IV | T V | l VI | | | | | | | | | | 8:00 | Re | viewe | | | | | Re | | r Orier | | | | Re | | | ntation | | | - ' | " " | II IV | V | ı vı | | 8:15 | AN | VSS | ST | FC | PD | ES | MF | VICVVC | BES | itatioi | I WICCI | ing . | 110 | VICVIC | l Onci | Itation | PD | iig | | | | 1 | | | 8:30 | AN | VSS | ST | FC | PD | ES | MF | VSS | BES | FC | PD | ES | LM | APE | ST | FC | PD | ES | | | FC FC | PD | APE | | 9:00 | AN | VSS | ST | FC | PD | ES | MF | VSS | BES | FC | PD | ES | LM | APE | ST | FC | PD | ES | | PM S | | PD | APE | | 9:30 | AN | VSS | ST | FC | PD | ES | MF | LM | BES | FC | PD | ES | LM | APE | ST | FC | PD | ES | | | FC FC | PD | APE | | 10:00 | AN | VSS | ST | FC | PD | ES | MF | | BES | | PD | ES | LM | APE | ST | FC | PD | ES | | | FC FC | PD | APE | | 10:30 | | | | eak | | | | | | eak | | | | | | eak | | | | Break | | | | | 11:00 | AN | VSS | ST | FC | PD | ES | MF | TV | BES | FC | PD | ES | LM | APE | ST | FC | PD | ES | | | FC FC | PD | APE | | 11:30 | AN | VSS | ST | FC | PD | ES | MF | TV | BES | FC | PD | ES | LM | APE | ST | FC | PD | ES | | | FC FC | PD | APE | | 12:00 | AN | VSS | ST | FC | PD | ES | MF | TV | BES | FC | PD | ES | LM | APE | ST | FC | PD | ES | LM | S | FC FC | | APE | | 12:30 | | | Lur | nch | | | | | Lur | nch | | | | | Lui | nch | | | LM | | | | | | 1:45 | AN | VSS | ST | FC | PD | ES | LM | TV | BES | FC | PD | ES | LM | PM | ST | FC | PD | ES | AN: Ar | nalvsis | | | | | 2:15 | AN | VSS | ST | FC | PD | ES | LM | TV | BES | FC | PD | ES | LM | PM | ST | FC | PD | ES | | | Sys. Sim | ulation | | | 2:45 | AN | VSS | ST | FC | PD | ES | LM | TV | BES | | PD | ES | LM | PM | ST | FC | PD | ES | | | Storage | | | | 3:15 | AN | VSS | ST | FC | PD | ES | LM | TV | BES | FC | PD | ES | LM | PM | ST | FC | PD | ES | | iel Cells | | | | | 3:45 | | | Bre | eak | | • | | | Bre | eak | | | | | | eak | • | | PD: Pr | oductio | n and D | elivery | | | 4:15 | AN | VSS | ST | FC | PD | ES | LM | TV | BES | FC | PD | ES | LM | PM | ST | FC | PD | ES | | nergy St | | | | | 4:45 | AN | VSS | ST | FC | PD | ES | LM | TV | BES | FC | PD | ES | LM | PM | ST | FC | PD | ES | MF: M | anufacti | uring | | | | 5:15 | AN | VSS | ST | FC | PD | ES | LM | TV | BES | FC | PD | ES | LM | PM | ST | FC | PD | | LM: Lig | ght-Wei | ght Mate | erials | | | 5:45 | | | | | | | | TV | | | | | | | | | PD | | TV: Te | chnolog | y Valida | ition | | | 6:00 | POST | TER SE | -SSIOI | N II· H | 2 Prod | uction | | | | | | | | | | | | | APE: A | Adv. Pw | r. Electro | onics | | | | POSTER SESSION II: H2 Production & Delivery, Vehicles & Systems | | | | | | | | | DOC- | TED C | | ON IV: | D===: | ممنما | BES: E | Basic Er | nergy Sc | iences | | | | | | | | mulatio | | | | | | | | | | | | | | | | | | | n Materi | | | | | Adva | anced (| Combu | ıstion, | and E | nergy | Р | OSTE | R SE | 10122 | N III: H | 12 | Materials, Advanced Power
Electronics, Safety, Codes & | | | FT: Fu | els Tecl | hnologie | S | | | | | | | | orage; | | | | | Storage, BES-Storage | | | Standards, Education, and High- | | | AC: Ac | dvanced | l Combu | stion | | | | | | | | | | | ption F | | | | | | | | | | | Temperature Materials Laboratory | | | TI: Technology Integration | | | | | | | | | | Sen | ate Off | | | 6:30 – | 8:30 | | | | Temperature Materials Eaboratory | | | ED: Ed | ducation | 1 | | | | | | | | | | 9:00 | | | P | IVI | | | | | | | | | | | | | | | SCS: 8 | Safety,C | Codes&S | tandar | ds | | | | | | | | | Crystal City Marriott Hotel | Tu | esday | / Mav | 19 | | | Wed | inesda | | | | Thursday May 21 | | | | Frid | ay May | 22 | | | | | | Salon | D | E&F | | | | | D | E&F | | | . <u>,</u> | | D | E&F | | <i>y</i> | | | D | E&F | <u>,,</u> | | | | 8:00 | | viewe | r Orier | ntation | n Mee | ina | | | r Orier | ntation | Meet | ina | | | r Orier | ntation | Meeti | na | | | | | | | 8:15 | FT | AC | | | | | TI | | | | | <u> </u> | ED | | | | | | SCS | | | | | | 8:30 | FT | AC | | | | | TI | AC | | | | | ED | AC | ļ | | | | SCS | | | | | | 9:00 | FT | AC | | | | | TI | AC | | | | | ED | AC | ļ | | | | SCS | | | | | | 9:30 | FT | AC | | | | | TI | AC | | | | | ED | AC | | | | | SCS | | | | | | 10:00 | FT | AC | | | | | TI | AC | | | | | ED | AC | | | | | | AC | | | | | 10:30 | | eak | | | | | | ak | | | | | | eak | 1 | | | | Brea | | | | | | 11:00 | FT | AC | | | | | TI | AC | | | | | ED | AC | | | | | | AC | | | | | 11:30 | FT | AC | | | | | TI | AC | | | | | ED | AC | | | | | | AC | | | | | 12:00 | FT | AC | | | | | TI | AC | | | | | ED | AC | | | | | SCS | | | | | | 12:30 | Lur | nch | | | | | Lur | nch | | | | | Lui | nch | | | | | | | | | | | 1:45 | FT | AC | | | | | TI | AC | | | | | ED | AC | Ī | | | | | | | | | | 2:15 | FT | AC | | | | | TI | AC | | | | | ED | AC | I | | | | | | | | | | 2:45 | FT | AC | | | | | TI | AC | | | | | ED | AC | I | | | | | | | | | | 3:15 | FT | AC | | | | | TI | AC | | | | | ED | AC | | | | | | | | | | | 3:45 | Bre | eak | | | | | Bre | eak | | | | | Bre | eak |] | | | | | | | | | | 4:15 | FT | AC | | | | | TI | AC | | | | | ED | AC | | | | | | | | | | | 4:45 | FT | AC | | | | | TI | AC | | | | | ED | AC | 1 | | | | | | | | | | 5:15 | FT | AC | | | | | | AC |] | | | | ED | AC | 1 | | | | | | | | | | 5:45 | | | | | | | | | | | | | ED | Tuesday, May 19 - Oral Presentations | Hotel | Crystal Gateway | Crystal Gateway | Crystal Gateway | Crystal Gateway | | |----------|---|---|--|---|--| | Salon | l | II | lli iii | IV | | | | AN0, Joseck, DOE: Systems | VSS0, Slezak, DOE: Vehcile & | ST0, Dillich, DOE: Hydrogen Storage | FC0, Leader, DOE: Fuel Cells | | | 8:30 AM | Analysis Session Introduction AN01, Levene, NREL: HyDRA: Hydrogen Demand and Resource Analysis Tool | Systems Simulation Overview VSS01, Francfort, INL: Advanced Vehicle Testing Activity (AVTA) | Session Review ST01, Klebanoff, SNL: Metal Hydride Center of Excellence | Program Element Overview FC01, Fenton, U of Central Florida: Lead Research and Development Activity for DOE's High Temperature Low Relative Humidity Membrane Program | | | | AN02, Simon, LLNL: H2-W The
Producers Value of Water in a
Hydrogen Economy | VSS02, Sell, GM & Ford with Chrysler possible: PHEV Technology Advancement and Demonstration Activity | ST02, Clemens, Stanford U:
Thermodynamically Tuned
Nanophase Materials for Reversible
Hydrogen Storage: Structure &
Kinetics of Nanoparticle and Model
System Materials | FC02, Mittelsteadt, Giner Electrochemical Systems, LLC: Dimensionally Stable High Temperature Membranes | | | | AN03, Kumar, ANL: Hydrogen
Quality Issues for Fuel Cell Vehicles | VSS03, Carlson, ANL: Advanced
Vehicle Benchmarking Activities -
PHEV & HEV | ST03, Kartin, SNL: Discovery and Development of Metal Hydrides for Reversible On-board Storage | FC03, Lvov, Penn State: New Protor Conductive Composite Materials with Co-continuous Phases Using Functionalized and Crosslinkable VDF/CTFE Fluoropolymers | | | | AN04, Diakov, NREL: Macro-System
Model | PHEV Testing | ST04, Fang, Univ. of Utah: Chemical
Vapor Synthesis and Discovery of H2
Storage Materials: Li-Al-Mg-N-H
System | FC04, Mays, U of Tennessee:
Poly(cyclohexadiene)-Based Polymei
Electrolyte Membranes for Fuel Cell
Applications | | | 10:30 AM | | BREAK | BREAK | BREAK | | | | AN05, Melaina, NREL: Discrete
Choice Analysis of Consumer
Preferences for Refueling Availability | VSS05, Duoba, ANL: PHEV & EV
SAE test procedure development and
Tools Used | ST05, Graetz, BNL: Aluminum
Hydride Regeneration | FC05, McGrath, Virginia Tech:
Advanced Materials for Proton
Exchange Membranes | | | | AN06, Lutz, SNL: Analysis of Energy
Infrastructures and Potential Impacts
from an Emergent Hydrogen Fueling
Infrastructure | and Emissions Models | ST06, Zidan, SRNL:
Electrochemical
Reversible Formation of Alane | FC06, Gervasio, Arizona State
University: Protic Salt Polymer
Membranes: High-Temperature
Water-Free Proton-Conducting
Membranes | | | | AN07, Bush, NREL: Hydrogen
Deployment System Modeling
Environment (HyDS-ME) | VSS07, Knee, ORNL: MD & HD Drive
Cycle Data Collection for Modeling
Expansion | ST07, Jensen, Univ. of Hawaii:
Fundamental Studies of Advanced
High-Capacity, Reversible Metal
Hydrides | FC07, Creager, Clemson University:
Fluoroalkyl-Phosphonic-Acid-Based
Proton Conductors | | | 12:30 PM | = | LUNCH | LUNCH | LUNCH | | | | AN08, Tolley, RCF, Inc.: Analysis of
Hydrogen Production and Delivery
Infrastructure as a Complex
Adaptive System | VSS08, Markel, NREL: Light Duty
Plug-In Hybrid Electric Vehicle
Analysis | ST08, Johnson, Univ. of
Pittsburgh/Georgia Tech: First-
Principles Modeling of Hydrogen
Storage in Metal Hydride Systems | FC08, Litt, Case Western Reserve
University: Rigid Rod
Polyelectrolytes: Effect on Physical
Properties Frozen-in Free Volume: | | | | AN09, Penev, NREL: Adapting the
H2A Hydrogen Production Cost
Analysis Model to Stationary
Applications | VSS09, Pagerit, ANL: Evaluation of
Advanced Vehicle Technologies to
Support GPRA/PDS | ST09, Liu, HRL Laboratories:
Thermodynamically Tuned
Nanophase Materials for Reversible
Hydrogen Storage | FC09, Pintauro, Vanderbilt University
NanoCapillary Network Proton
Conducting Membranes for High
Temperature Hydrogen/Air Fuel Cells | | | | AN10, Grasman, U Missouri-Rolla:
Hydrogen and Fuel Cell Analysis:
Lessons Learned from Stationary
Power Generation | VSS10, Rousseau, ANL: Assessment of Component Requirements and Fuel Efficiency of PHEVs | ST10, Tang, UTRC: Catalyzed Nano-
Framework Stablized High Density
Reversible Hydrogen Storage
Systems | FC10, Lipp, FuelCell Energy, Inc.:
High Temperature Membrane with
Humidification-Independent Cluster
Structure | | | 3:15 PM | AN11, Greene, ORNL: Modeling the
Transition to Hydrogen | VSS11, Rousseau, ANL:
Development of a Plug & Play
software architecture industry
standard | ST11, Udovic, NIST: Neutron
Characterization and Calphad in
Support of the Metal Hydride Center
of Excellence | FC11, Herring, Colorado School of
Mines: Novel Approaches to
Immobilized Heteropoly Acid (HPA)
Systems for High Temperature, Low
Relative Humidity Polymer-Type | | | 3:45 PM | | BREAK | BREAK | BREAK | | | | AN12, Wang, ANL: Fuel-Cycle
Analysis of Hydrogen-Powered Fuel-
Cell Systems with the GREET Model | VSS12, Fenske, ANL: Friction &
Wear Reduction for Heavy Vehicle
Applications | ST12, Lasher, TIAX: Analyses of
Hydrogen Storage Materials and On-
Board Systems | FC12, Goldbach, Arkema: Improved,
Low-Cost, Durable Fuel Cell
Membranes | | | | AN13, Olsen, University of Illinois-
Urbana-Champaign: Evaluation of
the Potential Environmental Impacts
from Large-Scale Use and
Production of Hydrogen in Energy
and Transportation Applications | VSS13, Routbort, ANL: Overview
of⊡Thermal Management | ST13, Ahluwalia, ANL: System Level
Analysis of Hydrogen Storage
Options | FC13, Hamrock, 3M: Membranes and MEA's for Dry, Hot Operating Conditions | | | | AN14, Grieb, Tetra Tech: Potential
Environmental Impacts of Hydrogen-
Based Transportation and Power
Systems | VSS14, Salari, LLNL: Truck
Aerodynamic Drag Reduction
Activities | ST14, Anton, SRNL: Overview of
Hydrogen Storage Engineering
Center of Excellence | FC14, Kerr, LBNL: New
Polyelectrolyte Materials for High
Temperature Fuel Cells | | ## **Tuesday, May 19 - Oral Presentations** | Hotel | Crystal Gateway | Crystal Gateway | Crystal City | Crystal City | |----------|--|--|---|--| | Salon | V | VI | D | E&F | | 8:15 AM | PD0, Farmer, DOE: Hydrogen
Production Program Element | ES0, Howell, US DOE: Overview: OVT Electrochemical Energy Storage | | ACE0, Singh, DOE: High Efficiency Clean Combustion Engines | | | PD01, Lomax, H2Gen Inno. Inc.:
Low-Cost Hydrogen Distributed
Production System Development | ES01, Santini, ANL: PHEV
Requirements and Targets Validation
(ANL) | FT01, Bunting, ORNL: APBF effects on Combustion | ACE01, Musculus, Sandia National
Laboratory (SNL): Heavy Duty
Combustion: Heavy Duty Low
Temperature and Diesel
Combustion, Heavy-Duty | | | PD02, Wang, PNNL: Bio-Derived
Liquids Reforming | ES02, Barnett, TIAX LLC: PHEV
Battery Cost Assessments | FT02, Sluder, ORNL: FACE
Overview. | ACE02, Miles, Sandia National
Laboratory (SNL): Light Duty
Combustion Research: Small Bore
Advanced Combustion Engine
R&D, Light-Duty Combustion
Modeling (UWI) | | 9:30 AM | PD03, Rozmiarek, Virent Energy
Sys.: Hydrogen Generation from
Biomass-Derived Carbohydrates via
Aqueous-Phase Reforming Process | ES03, Snyder, United States
Advanced Battery Consortium:
USABC Overview | FT03, McCormick, NREL: Quality,
Performance, and Emission Impacts
of Biodiesel Blends | ACE03, Kaiser, Sandia National
Laboratory (SNL): Hydrogen
Combustion Research | | 10:00 AM | PD04, Ozkan, Ohio State U:
Investigation of Reaction Networks
and Active Sites in Bio-Ethanol
Steam Reforming over Co-based | ES04, Fulop, A123Systems: HEV
Battery Development | FT04, Mueller, SNL: Sandia - Heavy-
Duty Fuels Research | ACE04, Dec, Sandia National
Laboratory (SNL): HCCI
Fundamentals (Advanced
Combustion HCCI Dual Engine) | | 10:30 AM | | BREAK | BREAK | BREAK | | | PD05, Balachandran, ANL:
Distributed Reforming of Renewable
Liquids via Water Splitting Using
Oxygen Transport Membrane (OTM) | | FT05, Przesmitski, NREL:
Intermediate Ethanol Blends | ACE05, Picket, Sandia National
Laboratory (SNL): Low
Temperature Diesel Combustion X-
Cut Research | | 11:30 AM | PD06, Lin, Arizona State U: Zeolite
Membrane Reactor for Water-Gas-
Shift Reaction for Hydrogen
Production | ES06, Engstrom, Johnson Controls-
Saft: Plug-in Hybrid Battery
Development | FT06, Sjoberg, SNL: Sandia -
Advanced Lean-Burn DI Spark
Ignition Fuels Research | ACE06, Steeper, Sandia National
Laboratory (SNL): Automotive
HCCI Engine Research | | 12:00 PM | PD07, Hopkins, Pall Corp.: High-
Performance, Durable, Palladium-
Alloy Membrane for Hydrogen
Separation & Purification | ES07, Alamgir, Compact Power: Plug-
in Hybrid Battery Development | FT07, Sluder, ORNL: NPBF effects on aftertreatment and emissions | ACE07, Oefelein, Sandia National
Laboratory (SNL): LES Engine
Modeling | | 12:30 PM | LUNCH | LUNCH | LUNCH | LUNCH | | 1:45 PM | PD08, Wong, General Atomics:
Solar High Temperature Cadmium
Oxide Water Splitting Cycle | ES08, Tataria, Celgard and Entek:
Battery Separator Development | FT08, Szybist, ORNL: NBPF effects on Combustion | ACE08, Van Blarigan, Sandia
National Laboratory (SNL): Free-
Piston Engine (can be combined w
fuels CPS 13418) | | 2:15 PM | PD09, T-Raissi, UCF/FSEC: Solar
High-Temperature Water-Splitting
Cycle with Quantum Boost | ES09, Murphy, INL, ANL, and SNL:
Battery Testing and Analysis | FT09, Zigler, NREL: Advanced
Petroleum Based Fuels Activities | ACE09, Wallner, Argonne National
Laboratory (ANL): H2 Internal
Combustion Engine Research –
Towards the 45 percent Efficiency
Goal | | 2:45 PM | PD10, Weimer, U of Colorado: Solar-
Thermal Manganese and Ferrite
Based Water Splitting Cycles | ES10, Bloom, ANL: Battery Testing and Analysis | FT10, Wu, GM: E85 Optimization | ACE10, Powell, Argonne National
Laboratory (ANL): Fuel Spray
Research on Light-Duty Injestion
Systems | | | Themochemical Cycle | ES11, Roth, SNL: Battery Abuse Testing | FT11, Woodrow, Malhe: Optimally
Controlled Flexible Fuel Powertrain
System | ACE11, Ciatti, Argonne National
Laboratory (ANL): Light-Duty
Engine Combustion and Emissions
Control Research (Visualization
of In-Cylinder Combustion R&D) | | 3:45 PM | | BREAK | BREAK | BREAK | | | PD12, Pickard, SNL/GA/CEA: Sulfur-
lodine Thermochemical Cycle | Management Studies and Modeling | FT12, Agarwal, Ford: E85 Optimized
Engine Application | ACE12, Aceves, Lawrence
Livermore National Laboratory
(LLNL): Modeling of High Efficiency
Clean Combustion Engines | | | PD13, Summers, SRNL: Hybrid
Sulfur Thermochemical Cycle | ES13, Barnes, US DOE/ ANL: Lithium
Supply and Lithium Battery Recycling | Optimization | ACE13, Pitz, Lawrence Livermore
National Laboratory (LLNL):
Chemical Kinetic Research on
HCCI & Diesel Fuels | | 5:15 PM | PD14, Herring, INL/ANL/Ceramatec:
High Temperature Electrolysis
System | ES14, Henriksen, ANL: Applied
Battery Research Overview | FT14, Confer, Delphi: E85
Optimization | ACE14, Torres, Los Alamos
National Laboratory (LANL): KIVA
Modeling to Support Diesel
Combustion Research | ## Wednesday, May 20 - Oral Presentations Crystal Gateway Crystal Gateway | Hotel | Crystal Gateway | Crystal Gateway | Crystal Gateway | Crystal Gateway | |----------|---|--
---|---| | Salon | I | 11 | III | IV | | | MF0, Devlin, DOE: Manufacturing Session Overview | | | | | | MF01, Ulsh, NREL: Fuel Cell MEA
Manufacturing R&D | VSS15, Bohn, ANL: Ultra-capacitor hybrid energy storage system | BES01, Chabal, University of Texas-
Dallas: Novel Theoretical and
Experimental Approaches for
Understanding and Optimizing
Hydrogen-Sorbent Interactions in | FC15, Berry, Kettering University:
Novel PEM Membrane and
Multiphase CFD Modeling of PEM
Fuel Cell | | | MF07, Rieke, PNNL: Digital
Fabrication of Catalyst Coated
Membranes | VSS16, Shidore, ANL: Battery systems performance studies - HIL components testing | BES02, Power, University of
California, Davis: Activation of
Hydrogen under Ambient Conditions
by Main Group Molecules | FC16, Johnston, LANL: Applied
Science for Electrode Cost,
Performance, and Durability | | | MF02, Legzdins, Ballard Material
Products: Reduction in Fabrication
Costs of Gas Diffusion Layers | LM01, Lara-Curzio, ORNL: Materials
Characterization Capabilities of the
High Temperature Materials
Laboratory and Commercial
Successes Enabled Thereby | BES03, Eddaoudi, University of South
Florida: Novel Porous Metal-Organic
Frameworks (MOFs) for Hydrogen
Storage | FC17, Debe, 3M: Advanced Cathode
Catalysts and Supports for PEM Fuel
Cells | | | MF03, Kaye, Ultracell Corporation:
Modular, High-Volume Fuel Cell
Leak-Test Suite and Process | | BES04, Hemley, Carnegie Institute of
Washington: Novel Molecular
Materials for Hydrogen Storage
Applications | FC18, Motupally , UTC Fuel Cells:
Highly Dispersed Alloy Cathode
Catalyst for Durability | | 10:30 AM | BREAK | BREAK | BREAK | BREAK | | | MF04, Busby, W.L. Gore:
Manufacturing of Low Cost, Durable
Membrane Electrode Assemblies
Engineered for Rapid Conditioning | TV0, Garbak, DOE: Technology
Validation | BES05, Mao, SLAC National
Accelerator Laboratory: Bonding and
Structures of Light Element-Hydrogen
Systems under Extreme Conditions | FC19, Wang, PNNL: Development of
Alternative and Durable High
Performance Cathode Supports for
PEM Fuel Cells | | | MF05, Puffer, RPI: Adaptive Process
Controls and Ultrasonics for High
Temperature PEM MEA
Manufacture | TV01, Wipke, NREL: Controlled
Hydrogen Fleet & Infrastructure
Analysis (Note: This presentation may
start as early as 11:15) | BES06, Pfeifer, University of
Missouri: Networks of Boron-Doped
Carbon Nanopores for Low-Pressure
Reversible Hydrogen Storage | FC20, Myers, ANL: Non-Platinum
Bimetallic Cathode Electrocatalysts | | | MF06, Sirosh, Quantum Fuel
Systems Technologies Worldwide,
Inc.: Development of Advanced
Manufacturing Technologies for Low | | BES07, Zidan, Savannah River
National Laboratory: Elucidation of
Hydrogen Interaction Mechanisms
with Metal-Doped Carbon | FC21, Zelenay, LANL: Advanced
Cathode Catalysts | | 12:30 PM | LUNCH | LUNCH | LUNCH | LUNCH | | | LM02, Warren, ORNL: Overview of
Low-Cost Carbon Fiber (LCCF)
R&D FISIPE VA-PAN Textile
Development | TV02, Casey, Chevron: Controlled
Hydrogen Fleet and Infrastructure
Demonstration and Validation Project | BES08, Wolverton, Northwestern
University: Kinetics and
Thermodynamics of Metal and
Complex Hydride Nanoparticles | FC22, Garzon, LANL: Effects of Fuel and Air Impurities on PEM Fuel Cell Performance | | | LM03, Baker, ORNL: Lignin Based
LCCF Precursors | | BES09, Sutter, Brookhaven National
Laboratory: Atomistic Transport
Mechanisms in Reversible Complex
Metal Hydrides | FC23, Goodwin, Clemson University:
Effects of Impurities on Fuel Cell
Performance and Durability | | | LM04, Paulauskas, ORNL:
Advanced Stabilization of Carbon-
Fiber Precursors/Advanced
Oxidation of Carbon-Fiber | TV04, Grasman, DaimlerChrysler:
Hydrogen to the Highways | BES10, Ceder, Massachusetts
Institute of Technology: Theory and
Modeling of Materials for Hydrogen
Storage | FC24, Molter, U of Connecticut: The
Effects of Impurities on Fuel Cell
Performance and Durability | | | LM05, Eberle, ORNL: LCCF
Precursor and Fiber Evaluation /
LCCFCommercialization & DOE
Planning, Warren - Critical Path
Status | TV05, Sell, General Motors:
Hydrogen Vehicle and Infrastructure
Demonstration and Validation | BES11, Autrey, Pacific Northwest
National Laboratory: Control of
Hydrogen Release and Uptake in
Condensed Phases | FC25, Swamy, Intelligent Energy:
Development and Demonstration of a
New-Generation High Efficiency 1-10
kW Stationary PEM Fuel Cell System | | 3:45 PM | BREAK | BREAK | BREAK | BREAK | | | LM06, Warren, ORNL: Overview of
Polymer Composites R&D
Norris/Frame - Composite
Underbody Joining | TV06, Heydorn, Air Products:
Validation of an Integrated Hydrogen
Energy Station | BES12, Ge, Southern Illinois
University: First Principles-Based
Simulation of Hydrogen Interactions
in Complex Hydrides | FC26, Strayer, UTC Power:
Stationary PEM Fuel Cell Power Plant
Verification | | | LM07, Kia, GM: High-Volume
Processing of Composites | TV07, Heydorn, Air Products :
California Hydrogen Infrastructure
Project | BES13, Conradi, Washington
University: In-Situ NMR Studies of
Hydrogen Storage Systems | FC27, Chartrand, Plug Power Inc.:
Intergovernmental Stationary Fuel
Cell System Demonstration | | | LM08, Kia, GM: Focal Project 4
Composite Underbody and Seat | TV08, Eudy, NREL: Technology
Validation: Fuel Cell Bus Evaluations | BES14, Chou, Georgia Institute of Technology: First-Principles Studies of Phase Stability and Reaction Dynamics in Complex Metal Hydride | FC28, Bessette, Acumentrics
Corporation: Development of a Low
Cost 10kW Tubular SOFC Power
System – Phase II | | 5:45 PM | | TV09, Rocheleau, Hawaii Natural
Energy Inst.: Hawaii Hydrogen Center
for Development and Deployment of
Distributed Energy Systems | | | ### Wednesday, May 20 - Oral Presentations | Hotel | Crystal Gateway | Crystal Gateway | Crystal City | Crystal City | |----------|---|---|--|--| | Salon | V | VI | D | E&F | | 8:15 AM | | ES15, Srinivasan, LBNL: Overview of | TI0, Smith, DOE: Clean Cities | | | 8:30 AM | PD15, James, DTI: Biological
Hydrogen Production Boundary
Level Analysis | Batteries for Transportation ES16, Battaglia, LBNL: Electrode Construction and Testing | Overview, goals, performance TI07, Melendez/Hopson, NREL/ORNL: Cleans Cities Tool Development and demonstrations | ACE15, Daw, Oak Ridge National
Laboratory (ORNL): Stretch
Efficiency for Combustion Engines | | 9:00 AM | PD16, Melis, UC Berkeley:
Maximizing Light Utilization
Efficiency and Hydrogen Production
in Microalgal Cultures | ES17, Sastry, U of Michigan:
Microscale Electrode Design Using
Coupled Kinetic, Thermal and
Mechanical Modeling | Tion, Scarpino, NETL: Clean Cities Financial Awards (examples of current projects we are finishing up, metrics on what they have accomplished, discussion o new solicitation | ACE16, Wagner, Oak Ridge
National Laboratory (ORNL):
Achieving/Demonstrating Vehicle
Technologies Engine Fuel
Efficiency Goals | | 9:30 AM | PD17, Ghirardi, NREL: Biological
Systems for Hydrogen
Photoproduction | ES18, Newman, U of California -
Berkeley: Design of PHEVs and
Electrolyte Properties | TI12, German, X PRIZE Foundation :
Automotive X Prize - Education Grant | ACE17, Wagner, Oak Ridge
National Laboratory (ORNL):
Achieving High Efficiency Clean
Combustion in Multi-Cylinder Light-
Duty Engines | | | PD18, Maness, NREL: Fermentative
and Electrohydrogenic Approaches
to Hydrogen Production | ES19, Zaghib, Hydro-Québec: Low-
Cost SiO-Graphite and Olivine-
Based Materials for Li-ion Batteries | TI01, Anstrom, Pennsylvania State
University: GATE Center for In-
Vehicle, High Power Energy Storage
Systems | ACE18, Edwards, Oak Ridge
National Laboratory (ORNL):
Ignition Control for HCCI – (Delphi
CRADA) | | 10:30 AM | BREAK | BREAK | BREAK | BREAK | | | PD19, Woodbury, ASU:
Development of Water Splitting
Catalysts Using a Novel Molecular
Evolution Approach | ES20, Thackeray, ANL: Lithium Metal
Oxide Cathodes | California - Davis: GATE Center for
Fuel Cell Hydrogen Hybrid Vehicles | ACE19, Assanis, University Of
Michigan: University Consortium On
Low Temperature Combustion For
High Efficiency, Ultra Low Emission
Engines | | 11:30 AM | PD20, Shimko, Avalence LLC:
Innovative 15X Scale-up of Core
Apparatus Producing Hydrogen via
Electrolysis | ES21, Shao-Horn, MIT: The Origin of
Surface Instability of Lithium Positive
Electrode Materials upon Cycling:
Combined XPS and TEM Studies | TI03, Guezennec, Ohio State
University: GATE Center for
Advanced Automotive Propulsion | ACE20, Choi, Oak Ridge National
Laboratory (ORNL): CLEERS
Coordination and Development of
Catalyst Process Kinetic
Data:
Coordination of Cross-Cut Lean | | 12:00 PM | PD21, Hamdan, Giner: PEM
Electrolyzer Incorporating an
Advanced Low Cost Membrane | ES22, Whittingham, SUNY-
Binghamton: The Synthesis and
Characterization of Substituted
Olivines and Layered Manganese | TI04, Irick, University of Tennessee:
GATE Center for Advanced Hybrid
Propulsion and Control Systems | ACE21, Herling, Pacific Northwest
National Laboratory (PNNL): PNNL
CLEERS Activities: CLEERS Diesel
Soot Filter Characterization, NOx | | 12:30 PM | LUNCH | LUNCH | LUNCH | LUNCH | | 1:45 PM | PD22, Miller, University of Hawaii at
Manoa: Photoelectrochemical
Hydrogen Production Overview | ES23, Manthiram, U of Texas @
Austin: Stabilized Spinels and Nano
Olivines | TI05, Lee, University of Illinois at
Urbana-Champaign: GATE Center for
Advanced Automotive Bio-fuels
Combustion Engines | ACE22, Lee, Argonne National
Laboratory (ANL): Advanced Diesel
Particulate Filter (DPF) Research | | | PD23, James, DTI:
Photoelectrochemical Hydrogen
Production Boundary Level Analysis | ES24, Doeff, LBNL: Olivines and
Substituted Layered Materials | TI06, Mallick, University of Michigan -
Dearborn: GATE Center for
Lightweighting Automotive Materials
and Processing | ACE23, Gallant, Pacific Northwest
National Laboratory (PNNL): Diesel
Soot Filter Characterization and
Modeling for advanced substrates
(CRADA with DOW Automotive) | | | PD24, Heske, UNLV: PEC Material
Characterization | ES25, Richardson, LBNL: Phase
Behavior and Solid State Chemistry in
Olivines | TI08, Nelson, Virginia Tech: GATE
Center for Automotive Fuel Cell
Systems | ACE24, Peden, Pacific Northwest
National Laboratory (PNNL):
Mechanism of Sulfur Poisoning of
NOx Adsorber Materials (CRADA | | | PD25, Jaramillo, Stanford University:
MoS2/WS2 Bases PEC Material
Systems | ES26, Ceder, MIT/SUNY-Stony
Brook: Olivine and Layered Materials
(Characterization, Rate Performance
and Stability) | TI10, Vaidya, The University of
Alabama at Birmingham: GATE
Center for Advanced Lightweight
Materials Technologies | ACE25, Peden, Pacific Northwest
National Laboratory (PNNL):
Characterization of aging
mechanisms in advanced catalysts
for the selective catalytic reduction | | 3:45 PM | BREAK | BREAK | BREAK | BREAK | | | PD26, Liu, Media and Process
Technology Inc.: Carbon Molecular
Sieve Membrane as
Reactor/Separator for Water Gas | ES27, Grey, SUNY-Stony Brook:
NMR Spectroscopy of Cathode
Materials | TI11, Wahlstrom, Argonne National
Laboratory (ANL): Advanced Vehicle
Competitions | ACE26, Crocker, University Of
Kentucky : Investigation of Aging
Mechanisms in Lean NOx Traps | | 4:45 PM | PD27, Bain, NREL: Indirectly Heated
Biomass Gasification | ES28, Yang, BNL: Characterization of
New Cathode Materials using
Synchrotron-based X-ray Techniques | TI13, O'Hara, DOE: Update on Legislative Items? | ACE27, Harold, University Of
Houston: Kinetic and Performance
Studies of the Regeneration Phase
of Model PT/RH/Ba NOx Traps for | | 5:15 PM | PD28, Vanderspurt, UTRC: A Novel
Slurry Based Biomass Reforming
Process | ES29, Goodenough, U of Texas @
Austin: Performance Enhancement of
Cathodes with Conductive Polymers | | ACE28, Greenbaum, Health Effects
Institute: Advanced Collaborative
Emissions Study (ACES) – Status
Report | Thursday, May 21 - Oral Presentations | Hatal | | Crustal Cataway | | Cm-ratal C-1 | |----------|--|---|--|---| | Hotel | Crystal Gateway | Crystal Gateway | Crystal Gateway | Crystal Gateway | | Salon | I | II | III | IV | | 8:15 AM | | | | | | | LM09, Kia, GM: Composite Crash
Energy Management | APE01, Ozpineci, ORNL: An Active Filter Approach to the Reduction of the DC Link Capacitor | ST15, Ott, LANL: Overview - DOE
Chemical Hydrogen Storage Center
of Excellence | FC29, Ahluwalia, ANL: Fuel Cell
Systems Analysis | | 9:00 AM | LM10, Baker, ORNL: Testing
Machine for Automotive Composites
(TMAC) LM10, Norris, ORNL:
Development of Next Generation P4 | APE02, Su, ORNL: Current Source
Inverters for HEVs and FCVs | ST16, Sneddon, U of Penn.:
Amineborane-Based Chemical
Hydrogen Storage | FC30, James, DTI: Mass Production
Cost Estimation for Direct H2 PEM
Fuel Cell System for Automotive
Applications | | | LM11, Smith, PNNL: Predictive
Modeling of Polymer Composites
PNNL/Predictive Modeling of
Polymer Composites ORNL | APE03, Marlino, ORNL: High-
Temperature, High-Voltage Fully
Integrated Gate Driver Circuit | ST17, Burrell , LANL: Chemical
Hydrogen Storage R&D at Los
Alamos National Laboratory | FC31, Sinha , TIAX: Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive Applications | | 10:00 AM | LM12, Smith, PNNL: Natural Fiber
Composite Retting, Preform
Manufacturing and Molding | APE04, Su, ORNL: Utilizing the
Traction Drive Power Electronics
System to Provide Plug-in Capability
for PHEVs | ST18, Autrey, PNNL: PNNL Progress
as Part of the Chemical Hydrogen
Storage Center of Excellence | FC32, More, ORNL: Microstructural
Characterization of PEM Fuel Cell
MEAs | | 10:30 AM | BREAK | BREAK | BREAK | BREAK | | | LM13, Feng, ORNL: Dynamic
Characterization of Spot Welds for
AHSSs | APE05, Balachandran, ANL: High
Dielectric Capacitors for Power
Electronics | ST19, Dixon, UA: Main Group
Element and Organic Chemistry for
Hydrogen Storage and Activation | FC33, Shore, BASF: Platinum Group
Metal Recycling Technology
Development | | | LM14, Grant, PNNL: Friction Stir
Spot Welding of AHSSs ORNL/
Friction Stir Spot Welding of AHSSs - | | Cost Precursors to Novel Hydrogen Storage Materials | FC34, Jacobson, NIST: Neutron
Imaging Study of the Water Transport
in Operating Fuel Cells | | 12:00 PM | LM15, Moore, SNL: NDE Inspection of Adhesive Bonds in Metal-Metal Joints | APE07, Taylor, Delphi Automotive:
Scalable High Temperature Inverter
for HEVs | ST21, Schubert, U.S. Borax:
Development of a High-Efficiency
Process for the Regeneration of
Spent Chemical Hydrogen Carriers | FC35, Borup, LANL: Water Transport
Exploratory Studies | | 12:30 PM | LUNCH | LUNCH | LUNCH | LUNCH | | 1:45 PM | LM16, Quinn, GM: Magnesium
Powertrain Cast Components | PM01, Wilson, ORNL: Power
Electronics Materials Compatability | ST22, Dillon, NREL: Overview of the DOE Hydrogen Sorption Center of Excellence | FC36, Cole, CFD Research Corp:
Water Transport in PEM Fuel Cells:
Advanced Modeling, Material
Selection, Testing, and Design | | 2:15 PM | LM17, Quinn, GM: High-Integrity
Magnesium Automotive Castings (HI-
MAC) | PM02, Woo, LLNL: NOx Sensor
Development | ST23, Zhou, Miami UnivOhio: A
Biomimetic Approach to Metal-
Organic Organic Frameworks with
High H2 Uptake | FC37, Kandlikar, Rochester Institute of Technology: Visualization of Fuel Cell Water Transport and Performance Characterization Under Freezing Conditions | | 2:45 PM | LM18, Quinn, GM: Ultra-Large
Castings of Aluminum and
Magnesium | PM03, Fenske, ANL: Fuel Injector
Holes | ST24, Yang, U of Michigan :
Hydrogen Storage by Spillover | FC38, Cross, Nuvera Fuel Cells:
Subfreezing Start/Stop Protocol for
an Advanced Metallic Open-Flowfield
Fuel Cell Stack | | 3:15 PM | LM19, Quinn, GM: Warm-Forming
Magnesium Sheet | PM04, Smith, PNNL: Hydrogen
Compatible Materials | ST25, Yakobson, Rice U.:
Optimization of Nano-Carbon
Materials for Hydrogen Sorption | FC39, Mirza, Honeywell:
Development of Thermal and Water
Management System for PEM Fuel
Cells | | 3:45 PM | | BREAK | BREAK | BREAK | | 4:15 PM | LM20, Quinn, GM: Magnesium Front
End Research & Development | PM05, Lin, ORNL: Mechanical
Reliability of PS Actuators | ST26, Dillon, NREL: NREL Research
as Part of the Hydrogen Sorption
Center of Excellence | FC40, Tortorelli, ORNL: Nitrided
Metallic Bipolar Plates | | 4:45 PM | LM21, Quinn, GM: Magnesium Front
End Design & Development | PM06, Kass, ORNL: Evaluation of
Materials via ACERT Engine | ST27, Liu, Argonne: Hydrogen
Storage through Nanostructured
Polymeric Materials | FC41, Adrianowycz, GrafTech
International, Ltd.: Next Generation
Bipolar Plates for Automotive PEM
Fuel Cells | | 5:15 PM | LM22, Lavender, PNNL: Low-Cost Titanium | PM09, Watkins, ORNL: Durability
Diesel Engine Partic. Filters | | FC42, Parsons, UTC Fuel Cells: Low
Cost, Durable Seals for PEM Fuel
Cells | **Thursday, May 21 - Oral Presentations** | Hotel Crystal Gateway | | Crystal Gateway | Crystal City | Crystal City | | |-----------------------|--|--|---|--|--| | Salon | V | VI | D | E&F | | | 8:15 AM | PD29, Gardiner, DOE: Hydrogen
Delivery
Program Element | | ED0, Cooper, DOE: Education
Session - DOE Overview | | | | 8:30 AM | PD30, Mintz, ANL: Hydrogen
Delivery Infrastructure Analysis | ES30, Kumta, U. of Pittsburg: High
Capacity Reversible Nanoscale
Heterostructures: Novel Anodes for
Lithium-ion Batteries | ED01, Placet, PNNL: Hydrogen
Safety: First Responder Education | ACE29, Lawson, NREL: Real World Studies of Ozone Formation as a function of NOx reductions — Summary and Implications for Air Quality Impacts of Non- | | | 9:00 AM | PD31, Sozinova, NREL: Hydrogen
Delivery Component Model | ES31, Thackeray, ANL: Intermetallic
Anodes | ED02, Caton, NREL: Hydrogen
Education for Code Officials | ACE30, Storey, ORNL:
Measurements of Mobile Source Air
Toxics from New Emissions Control
Technologies | | | 9:30 AM | PD32, Schmura, Concurrent Tech.
Corp: Hydrogen Energy Station
Analysis in Northeastern US and
Hydrogen Sensors for Infrastructure | ES32, Whittingham, SUNY-
Binghamton: Nano-structured
Materials as Anodes | ED03, Blekhman, Cal State LA
University Auxiliary Services, Inc.: | ACE31, Parks, Oak Ridge National
Laboratory (ORNL): ORNL 2.01:
Measurement and Characterization
of Lean NOx Adsorber
Regeneration and Desulfation:
Controlling NOx from Multi-mode
Lean DI engines | | | 10:00 AM | PD33, Lord Snider, SNL: Geologic
Hydrogen Storage | ES33, Kostecki, LBNL: 3-D
Nanostructured Carbon-Tin
Composite Anodes | ED04, Lehman, Humboldt State
University Sponsored Programs
Foundation: | ACE32, Partridge, Oak Ridge
National Laboratory (ORNL): ORNL
T1.01: NOx Aftertreatment CRADA
with Cummins | | | 10:30 AM | | BREAK | BREAK | BREAK | | | 11:00 AM | PD34, Heshmat, Mohawk Innovative
Technologies: Oil-Free, Centrifugal
Hydrogen Compression Technology
Demonstration | ES34, Srinivasan, LBNL: Kinetics of Lithium Insertion into Silicon Anodes | ED05, Keith, Hydrogen Education
Curriculum Path at Michigan
Technological University: | ACE33, Toops, Oak Ridge National
Laboratory (ORNL): NOx Adsorber
R&D (CRADA between ORNL and
International Truck and Engine
Company) | | | 11:30 AM | PD35, Osborne, Concepts NREC:
Development of a Centrifugal
Hydrogen Pipeline Gas Compressor | ES35, Dillon, NREL: Nano-Structured
Metal Oxide Films | ED06, Sleiti, Bachelor of Science □Engineering Technology□Hydrogen and Fuel Cell Education Program Concentration: | ACE34, Frazier, Cummins: Light-
Duty Efficient Clean Combustion | | | 12:00 PM | PD38, Toseland, APCI: Reversible
Liquid Carriers for an Integrated
Production, Storage and Delivery of
Hydrogen | ES36, Dudney, ORNL: Investigation of Metallic Lithium Anode | ED07, Mann, University of North
Dakota: | ACE35, Patton, General Motors
Corporation: High-Efficiency Clean
Combustion Engine Designs for
Spark-Ignition and Compression- | | | 12:30 PM | _ | LUNCH | LUNCH | LUNCH | | | 1:45 PM | PD36, Schwartz, Praxair: Advanced
Hydrogen Liquefaction Process | ES37, Srinivasan, LBNL: Overview of New Electrolyte Projects (3 projects) | ED08, Dever, Carolina Tractor & Equipment Co. Inc.: | ACE36, Sun, Ford Motor Company:
Advanced Boost System
Development for Diesel HCCI
Application | | | 2:15 PM | PD37, Barclay, Prometheus Energy:
Active Magnetic Regenerative
Liquefier | ES38, Balsara, LBNL: New Lithium-
based Ionic Liquid Electrolytes that
Resist Salt Concentration Polarization | ED09, Hitchcock, Houston Advanced
Research Center: | ACE37, Ojeda, Navistar International Corporation: Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion | | | | PD39, Aceves, LLNL: High
Pressure, Low Temperature
Hydrogen Tube Trailers | ES39, Kerr, LBNL: Interfacial
Behavior of Electrolytes | ED10, Baxter-Clemmons , The South Carolina Hydrogen and Fuel Cell Alliance: | ACE38, Fiveland, Caterpillar Inc. :
Development of Enabling
Technologies for High Efficiency,
Low Emissions Homogeneous | | | 3:15 PM | PD40, Newhouse, Lincoln
Composites: Development of High
Pressure Hydrogen Storage Tank for
Storage and Gaseous Truck
Delivery | ES40, Smith, U. of Utah: Molecular
Dynamics Simulation Studies of
Electrolytes and Electrolyte-Electrode
Interfaces | ED11, Christopher, Commonwealth of Virginia: | ACE39, Kruiswyk, Caterpillar:
Engine System Approach to
Exhaust Energy Recovery | | | 3:45 PM | BREAK | BREAK | BREAK | BREAK | | | | PD42, Adams, SRNL: Hydrogen
Permeability and Pipeline
Integrity/Fiber Reinforced Composite
Pipeline | ES41, Srinivasan, LBNL: Overview of New Electrolyte Projects (3 projects) | ED12, Rinebold, Connecticut Center for Advanced Technology, Inc.: | ACE40, Stanton, Cummins Inc. :
Enabling High Efficiency Clean
Combustion | | | 4:45 PM | PD41, Sofronis, U of Illinois: A
Combined Materials
Science/Mechanics Approach to the
Study of Hydrogen Embrittlement of | ES42, Srinivasan, LBNL: Summary
and Future Plans | ED13, Valente, Ohio Fuel Cell
Coalition: | ACE41, Nelson, Cummins: Exhaust
Energy Recovery | | | 5:15 PM | PD43, Feng, ORNL: H2 Permeability and Integrity of Steel Welds | | ED14, Serfass, Technology
Transition Corporation: | ACE42, Zhang, Detroit Diesel:
Heavy Truck Engine Development
& HECC | | | 5:45 PM | PD50, Muralidharan, SECAT:
Hydrogen Delivery in Steel Pipelines | | ED15, Kubert, Clean Energy States
Alliance: | | | Friday, May 22 - Oral Presentations | Hotel | Crystal Gateway | Crystal Gateway | Crystal Gateway | Crystal Gateway | |----------|--|---|---|---| | Salon | I | ll II | III | IV | | 8:15 AM | | | | | | | LM23, Heimbuch, A/SP: Overview of
Advanced High-Strength Steel
(AHSS) R&D | PM08, Grant, PNNL: Tailored materials for advanced CIDI Engines | ST28, Cooper, Air Products: Enabling
Discovery of Materials with a Practical
Heat of H2 Adsorption | | | 9:00 AM | LM24, Heimbuch, A/SP: NSF- 3d
Generation Advanced High Strength
Steel | PM07, Lavender, PNNL:
Enhancements by Shock Peening
(Cummins) | ST29, Liu, Duke U: Optimizing the
Binding Energy of Hydrogen on
Nanostructured Carbon Materials
through Structure Control and
Chemical Doping | FC44, Blake, Delphi: Solid Oxide Fuel
Cell System Development for
Auxiliary Power in Heavy Duty
Vehicle Applications | | 9:30 AM | LM25, Smith, PNNL:
Characterization of
Thermomechanical Behavior of
TRIP Steels ORNL and PNNL | PM10, Wereszczak, ORNL:
Thermoelectric Mechanical Reliability | ST30, Kittrell, Rice U.:
Nanoengineering the Forces of | FC45, Duong, Superprotonic, Inc.:
Solid Acid Fuel Cell Stack for APU
Applications | | 10:00 AM | LM26, Heimbuch, A/SP: Strain Rate
Characterization A/SP/Strain Rate
Characterization ORNL/ Sheet-
Steel Fatigue Characteristics | PM11, Singh, ORNL: Thermoelectric
Materials by Design, Computational
Theory and Structure | ST31, Pfeifer, Univ. Missouri -
Columbus: Development of Boron-
Substituted, High-Surface Area
Carbon Materials Made from | FC46, Mitlitsky, Bloom Energy Corp.:
Low-Cost Co-Production of Hydrogen
and Electricity | | 10:30 AM | BREAK | BREAK | BREAK | BREAK | | | LM27, Heimbuch, A/SP: Hydroform
Materials and Lubricants/Lightweight
Rear Chassis Structure; Future | PM12, Gruen, ANL: Thermoelectric
Nanocarbon Ensembles | ST32, Long, UC Berkeley/LBNL: A
Synergistic Approach to the
Development of New Hydrogen | FC47, Tao, Materials & Systems
Research: Development of Novel
Efficient Solid-Oxide Hybrid for Co- | | | LM28, Daniels, ANL: Overview of
Recycling Technology R&D | PM13, Hendricks, PNNL:
Thermoelectric Materials | ST33, Yaghi, UCLA: Hydrogen
Storage in Metal-Organic
Frameworks and Novel Hydrogen | FC48, Ludwiszewski, Lilliputian
Systems: Silicon Based SOFC Chip
for Portable Consumer Electronics | | | LM29, Jody, ANL: Post-Shred
Materials Recovery Technology
Development and Demonstration | | ST34, Aceves, LLNL: Cryogenic
Capable Pressure Vessels for
Vehicular Hydrogen Storage | FC49, Cheekatamarla,
Nanodynamics Energy: Biogas
Fueled Solid Oxide Fuel Cell Stack | | 12:30 PM | LM30, Pomykala , ANL: Recycling
Technology Validation | | | | ## Friday, May 22 - Oral Presentations | Hotel | Crystal Gateway | Crystal Gateway | Crystal City | Crystal City | |----------|--|---|---|---| | Salon | V | VI | D | E&F | | 8:15 AM | | | SCS0, Ruiz, DOE: Safety, Codes, and Standards | | | 8:30 AM | PD44, Ma, Worcester Polytechnic
Institute: Composite Pd and Alloy
Porous Stainless Steel Membranes
for Hydrogen Production and
Process Intensification | APE08, El-Refaie , General Electric
Global: Scaleable Low Cost High
Performance IPM Motor | SCS01, Rivkin, NREL: Hydrogen
Codes and Standards and Permitting | ACE43, Mendler, Envera LLC: Low
Cost Fast Response Actuator | | 9:00 AM | PD45, Morreale,
NETL-Office of
Research and Development:
Hydrogen Separation (Reaction
Chemistry and Engineering) | APE09, Smith, General Motors:
Integrated Traction Drive System | SCS02, Burgess, NREL: Hydrogen
Codes and Standards | ACE44, Hall, University of Texas at
Austin: On-Board Engine Exhaust
Particulate Matter Sensor for HCCI
and Conventional Diesel Engines | | 9:30 AM | PD46, Jack, Eltron Research Inc.:
Scale-up of Hydrogen Transport
Membranes for IGCC and
FutureGen Plants | APE10, Narumanchi, NREL:
Advanced thermal interface materials
for power electronics | SCS03, Somerday, SNL: Materials
Compatibility | ACE45, Yang, General Motors
Corporation: Develop
Thermoelectric Technology for
Automotive Waste Heat Recovery | | | Institute: Cost-Effective Method for | APE11, Abraham, NREL:
Characterization and development of
Advanced Heat Transfer
Technologies | SCS04, Fassbender, PNNL:
Hydrogen Safety Tools: Software and
Hardware | ACE46, Schock, Michigan State
University: Thermoelectric
Conversion of Waste Heat to
Electricity | | 10:30 AM | | BREAK | BREAK | BREAK | | | PD48, Emerson, United
Technologies: Experimental
Demonstration of Advanced
Palladium Membrane Separators for
Central High-Purity Hydrogen | APE12, Bharathan, NREL: Research
and Development of Air Cooling
Technology for Power Electronics
Thermal Control | SCS05, Rockward, LANL: Hydrogen
Fuel Quality | ACE47, LaGrandeur, BSST LLC -
Amerigon: Direct Energy
Conversion from Waste Heat
Recovery | | | PD49, Barton, Western Res. Ins. &
U of Wyoming Res.Corp.:
Integration of a Structural Water Gas
Shift Catalyst with a Vanadium Alloy
Hydrogen Transport Device | APE13, Benion, NREL: Power
Electronic Thermal System
Performance and Integration | SCS06, Moen, SNL: Hydrogen
Release Behaviour | ACE48, Gundlach, General Motors
Corporation: Automotive
Thermoelectric HVAC | | 12:00 PM | | APE14, O'Keefe, NREL: Thermal
Stress and Reliability for Advanced
Power Electronics and Electric
Machines | SCS07, Weiner, PNNL: Hydrogen
Safety Panel | | # Monday, May 18 - Poster Presentations Crystal Gateway Hotel - Grand Ballroom, 6-9 PM | Orystal Cateway Floter - Grand Bulliotin, 0-5 Fin | |--| | Systems Analysis | | ANP01, Placet, PNNL: Program Benefits | | ANP02, Duffy, NREL: DOE Hydrogen Program Risk Analysis in Support of EERE's Portfolio Analysis | | ANP03, Colella, SNL: Dynamic System Modeling of Integrated Fuel Cell System with Hydrogen Co-Production | | | | ANP04, Brown, PNNL: A Business Case for Hydrogen Co-Production | | ANP05, Ulsh, NREL: The Economics of Biogas Co-Production | | Technology Validation | | TVP01, Egelton, Southeast Michigan Council of Governments (SEMCOG): Detroit Commuter Hydrogen Project | | TVP02, Goodman, Tanadgusix Foundation: Tanadgusix Foundation Hydrogen Project | | | | TVP04, Parsons Marshall, Texas Hydrogen Highway: Texas Hydrogen Highway | | TVP05, Portwood, Florida Hydrogen Initiative: Florida Hydrogen Initiative | | Fuel Cells | | FCP01, Bloom, ANL: Fuel Cell Testing at the Argonne Fuel Cell Test Facility | | FCP02, Rockward, LANL: Component Benchmarking Subtask Reported: USFCC Durability Protocols and Technically-Assisted Industrial and University Partners | | FCP03, Lawrance, IdaTech: Research & Development for Off Road Fuel Cell Applications | | , , | | FCP05, Vogel, Plug Power: International Micro-CHP Fuel Cell Demonstration | | FCP06, VanZee, U of South Carolina: University of South Carolina Fuel Cell Design Project (FY 2006) | | FCP07, Chuang, U of Akron: Development of 5-Kilowatt Prototype Coal-Based Fuel Cell | | FCP08, King, Michigan Technological University: Center for Fundamental and Applied Research in Nanostructured and Lightweight Materials | | FCP09, Zhu, Nanosys, Inc.: Engineered Nanostructured MEA Technology for Low Temperature Fuel Cells | | | | FCP10, Mauritz, U of So. Mississippi: Alternate Fuel Cell Membranes for Energy Independence (hydrocarbon) | | FCP11, Perna, Rolls Royce Fuel Cell Systems Inc: Extended Durability Testing of an External Fuel Processor for a Solid Oxide Fuel Cell (SOFC) | | FCP12, Reifsnider, U of South Carolina: Hydrogen Fuel Cell Development in Columbia, SC (FY 2008) | | FCP13, Rehbock, Martin County Economic Development Corp: Martin County Hydrogen Fuel Cell Development | | FCP14, Trenger, Stark State College of Technology: Fuel Cell Balance of Plant Reliability Testbed Project | | To the state of th | # Poster Session Guide May 18, Monday Poster Session Salons C & H #### Tuesday, May 19 - Poster Presentations Crystal Gateway Hotel - Grand Ballroom, 6-9 PM #### Hydrogen Production and Delivery PDP01, McFarland, U. of CA Santa Barbara: Iron Oxide Based PEC Materials PDP02, Turner, NREL: III-V Based PEC Materials PDP03, Yan, NREL: PEC Materials Theory and Modeling PDP04, Madan, MVSystems: Photoelectrochemical Hydrogen Production PDP05, Gaillard, HNEI: Tungsten Oxide Based PEC Materials PDP06, Kaneshiro, HNEI: Copper Chalcoprite Based PEC Materials PDP07, Ingler, University of Toledo: Critical Research for Cost-Effective Photoelectrochemical Production of Hydrogen PDP08, Mazumder, U. Arkansas Little Rock: Photoelectrochemical Hydrogen Production PDP09, Misra, U of Nev. Reno: Photoelectrochemical Generation of Hydrogen Using Heterostructural Titania Nanotube Arrays PDP10, Adams, SRNL: Composite Bulk Amorphous Hydrogen Purification Membranes PDP11, Holbery, PNNL: Advanced Hydrogen Composite Tank Development PDP12, Semelsberger, LANL: Catalytic Solubilization and Conversion of Lignocellulosic Feedstocks PDP13, Payzant, ORNL: Novel Low-Temperature Proton Transport Membranes PDP14, Welk, SNL: Ultra-thin Proton Conduction Membranes for H2 Stream Purification with Protective Getter Coatings PDP15, Czernik, NREL: Distributed Bio-Oil Reforming PDP16, Ahmed, ANL: Pressurized Steam Reforming of Bio-Derived Liquids for Distributed Hydrogen Production PDP17, Harrison, NREL: Renewable Electrolysis Integrated System Development and Testing PDP18, Xu, J Craig Venter Institute: Hydrogen from Water in a Recombinant Oxygen-Tolerant Cyanobacterial System PDP19, Douglas, Montana State University: Use of Biological Materials and Biologically Inspired Materials for Hydrogen Catalysts PDP20, Somerday, SNL: Enabling Hydrogen Embrittlement Modeling of Structural Steels PDP21, Heshmat, Mohawk Innovative Technologies: Centrifugal Compressor Operating Beyond the Bending Critical Speed PDP22, Lipp, FuelCell Energy: Development of Highly Efficient Solid State Electrochemical Hydrogen Compressor (EHC) PDP23, Shimko, Gas Equipment Engineering Corporation: Innovative Hydrogen Liquefaction Cycle PDP24, Smith, ORNL: Life Cycle Verification of Polymeric Storage Liners PDP25, Fenske, ANL: Coatings for Centrifugal Compression PDP26, Gore, Purdue University: Purdue Hydrogen Systems Laboratory PDP27, Martin, Edison Materials Tech Center: Developing Improved Materials to Support the Hydrogen Economy PDP28, Goswami, U of South Florida: Hydrogen Production and Fuel Cell Research Vehicle and Systems Simulation VSSP01, Ajayi, ANL: Boundary Layer Lubrication VSSP02, Thornton, NREL: Integrated Vehicle Thermal Management Systems Analysis/Modeling VSSP03, Brooker, NREL: Renewable Fuel and Hybrid Vehicle Modeling & Analysis VSSP04, Erdemir, ANL: Low-Friction Hard Coatings VSSP05, Fenske, ANL: Parasitic Energy Losses VSSP06, Gonder, NREL: Route Based Controls Potential for Efficiency Gains : MATT PHEV development test platform Utilization VSSP07, Lohse-Busch, ANL VSSP08, Markel, NREL: GPS Travel Survey Data Collection & Analysis VSSP09, Proc, NREL: Cool Cab, Truck Thermal Load Reductions VSSP10, Routbort, ANL: Nanofluid Development for
Engine Cooling Systems VSSP11, Singh, ANL: Erosion of Nanofluid Materials VSSP12, Wagner, ORNL: Enabling High Efficiency Ethanol Engines - Delphi CRADA VSSP13, Walkowicz, NREL: Heavy Vehicle Field Evaluations VSSP14, Yu, ANL: Efficient Cooling in Engines with Nucleated Boiling VSSP15, Rousseau, ANL: PSAT Heavy Duty VSSP16, Wallner, ANL: Fuel efficiency potential of hydrogen vehicles VSSP17, Rousseau, ANL: PSAT model validation (GM 2Mode) VSSP18, Rousseau, ANL: PHEV control strategy development : D3 website database VSSP20, Killian, Eaton Corporation: Heavy Truck Friction & Wear Reduction Technologies VSSP21, Timofeeva, ANL: Nanofluid Development and Characterization VSSP22, Yu, ANL: Heat Transfer of Nanofluids Fuel Technologies FTP01, Li, Univ. Illinois Urbana-Champaign: Biodiesel for HCCI FTP02, Wang, ANL: Full-Cycle Energy and Emissions Analysis FTP03, , Reaction Design: Fuel Kinetics Models Advanced Combustion ACEP01, Larson, Sandia National Laboratory (SNL): CLEERS:Surface Chemistry (Old title: Benchmark Kinetics for NOx Adsorbers and Catalyzed DPF) ACEP02, Peden, Pacific Northwest National Laboratory (PNNL): Degradation mechanisms in advanced catalysts for urea selective catalytic reduction(CRADA with General Moto ACEP03, Rappe, Pacific Northwest National Laboratory (PNNL): Advanced Combustion Engine low temperature CO and HC Oxidation (CRADA with Caterpillar) ACEP04, Elsner, Hi-Z: High ZT Thermoelectric Materials ESP01, Dees, ANL: Electrochemistry Cell Model ESP02, Abraham, ANL: Electrochemistry Diagnostics ESP03, Gering, INL: Statistical DOEx at INL ESP04, Jansen, ANL: Low Temperature Performance Characterization and Modeling ESP05, Gering, INL: Advanced Chemistry: Electrolyte Modeling ESP06, McLarnon, LBNL: Electrochemistry Diagnostics ESP07, Yoon, BNL: Electrochemistry Diagnostics ESP08, Roth, SNL: Abuse Tolerance Improvement ESP09, Amine, ANL: Engineering of high energy cathode material ESP10, Amine, ANL: Developing new high energy gradient concentration cathode material ESP11, Amine, ANL: Developing a new high capacity anode with long life ESP12, Lu, ANL: Streamlining the optimization of Li-lon battery electrodes ESP13, Thackeray, ANL: Design & evaluation of high capacity cathode materials ESP14, Kang, ANL: Development of high-capacity cathode materials with integrated structures ESP15, Abraham, ANL: Development of novel electrolytes & additives for PHEV applications ESP16, Jansen, ANL: Develop improved methods of making inter-metallic anodes ESP17, Vaughey, ANL: Lithium metal anodes ESP18, Belharouak, ANL: Evaluation of Li2M2+SiO4 (M=Fe, Mn, Co) two-electron cathodes ESP19, Abraham, ANL: Structural investigations of layered oxide materials for PHEV applications ESP20, Jow, Army Research Laboratory: High Voltage Electrolytes ESP21, Amine, ANL: New high power Li2MTi6O14 anode material ESP22, Smith, Naval Surface Warfare Center: Ultracapacitor Development ESP23, Amine, ANL: Develop & evaluate materials & additives that enhance thermal & overcharge abuse ESP24, Lu, ANL: Screen electrode materials and cell chemistries ESP25, Jansen, ANL: Fabricate PHEV cells for testing & diagnostics ## Poster Session Guide May 19, Tuesday Poster Session Grand Ballroom | | VSSP21
VSSP22 | VSSP20
ESP25 | VSSP19
ESP24 | | VSSF | | VSSP17
VSSP14 | VSSP
VSSP | | | |---|------------------|-----------------|-----------------|----------------|--------------|---|------------------|--------------|--------------|---| | K | ESP21
ESP20 | ESP22
ESP19 | ESP23
ESP18 | | VSSF | | VSSP11
VSSP08 | VSSP
VSSP | — <i>F</i> | 4 | | | ESP15
ESP14 | ESP16
ESP13 | ESP17
ESP12 | | VSSF
VSSF | | VSSP05
VSSP02 | VSSP
VSSP | — 16 | 3 | | J | ESP09
ESP08 | ESP10
ESP07 | ESP11
ESP06 | | PDP
PDP | | PDP27
PDP24 | PDP2 | — \ | | | Н | ESP05
ESP02 | ESP04
ESP01 | ESP05
ACEP04 | | PDP | | PDP20
PDP17 | PDP2 | — / | | | | ACEP01
FTP01 | ACEP02
FTP02 | ACEP03
FTP03 | | PDP
PDP | | PDP14
PDP10 | PDP1 | _ | C | | | Povious | - _T | | - | PDP | | PDP08
PDP05 | PDP0 | | | | | Reviewer
Room |

 | | 1

 | | | PDP04
PDP01 | PDP0 | _ | | | | | | |
F | | E | | | D | | ## Wednesday, May 20 - Poster Presentations #### Crystal Gateway Hotel - Grand Ballroom, 6-9 PM Hydrogen Storage STP01, Liu, Quantum: H2 Tank Manufacturing Optimization STP02, Fan, Gas Technology Institute: Electron-Charged Hydrogen Storage Materials STP03, Cabasso, State University of New York: Polymer-Based Activated Carbon Nanostructures for H2 Storage STP04, Liu, Quantum: Low-Cost High-Efficiency High-Pressure H2 Storage STP05, Eckert, UC-Santa Barbara: Hydrogen Storage Materials with Binding Intermediate between Physisorption and Chemisorption ST14, Anton, SRNL: Overview of Hydrogen Storage Engineering Center of Excellence STP06, Motyka, SRNL: SRNL Technical Work: Modeling, Design, and Testing of Metal Hydride and Adsorbent Systems STP07, Herling, PNNL: Systems Engineering of Chemical Hydride, Pressure Vessel, and Balance of Plant for On-Board Hydrogen Storage STP08, Mosher, United Technologies: Advancement of Systems Designs and Key Engineering Technologies for Materials Based Hydrogen Storage STP09, Semelsberger, LANL: Chemical Hydride Rate Modeling, Validation, and System Demonstration STP10, Reiter, NASA JPL: Key Technologies, Thermal Management, and Prototype Testing for Advanced Solid-State Hydrogen Storage Systems STP11, Thornton, NREL: System Design, Analysis and Modeling for Hydrogen Energy Storage STP12, Kumar, General Motors: Modeling Hydrogen Storage System Filling and Operation to Improve Overall Performance STP13, Siegel, Ford Motors: Ford/BASF Activities in Support of the Hydrogen Storage Engineering Center of Excellence STP14, Drost, Oregon State: Microscale Enhancement of Heat and Mass Transfer for Hydrogen Energy Storage STP15, Baldwin, Lincoln Composites: Development of Improved Composite Pressure Vessels for Hydrogen Storage STP16, Liu, Univ. of Oregon: Novel Boron and Nitrogen Substituted Cyclic Compounds for Use as Liquid Hydrogen Carriers STP17, Goldberg, U of Washington: Solutions for Chemical Hydrogen Storage: Dehydrogenation of B-N Bonds STP18, Power, UC Davis: Chemical Hydrogen Storage Using Ultra-High Surface Area Main Group Materials & The Development of Efficient Amine-Borane Regeneration Cycles STP19, Macdonald, Penn State: Electrochemical Hydrogen Storage Systems STP20, Hawthorne, U of Missouri: Chemical Hydrogen Storage Using Aluminum-Ammonia-Borane Complexes STP21, Hwang, Michigan Tech Univ.: Novel Metal Perhydrides for Hydrogen Storage STP22, Gore, Purdue University: Purdue Hydrogen Systems Laboratory STP23, Stefanakos, U of South Florida: Hydrogen Storage Research STP24, Lefenfeld, SiGNa: NaSi and Na-SG Powder Hydrogen Fuel Cells ST15, Ott, LANL: Overview - DOE Chemical Hydrogen Storage Center of Excellence STP25, Baumann, LLNL: Carbon Aerogels for Hydrogen Storage STP26, Geohegan, ORNL: Single-Walled Carbon Nanohorns for Hydrogen Storage and Catalyst Supports STP27, Ahn, CalTech: Enhanced Hydrogen Dipole Physisorption: Henry's Law and Isosteric Heats in Microporous Sorbents STP28, Wu, U of North Carolina: Characterization of Hydrogen Adsorption by NMR STP29, Chung, Penn State: Advanced Boron and Metal Loaded High Porosity Carbons STP30, Gross, HyEnergy: Best Practices for Characterizing Hydrogen Storage Properties of Materials STP31, Yaghi, UCLA: A Joint Theory and Experimental Project in the High-Throughput Synthesis and Testing of Porous COF and ZIF Materials for On-Board Vehicular Hydrogen Stor STP32, Currier, LANL: Novel Concept Using an Electric Field to Increase the Hydrogen Binding Energy in Hydrogen Adsorbents STP33, Hupp, Northwestern University: Novel Hydrogen Adsorbent Materials with Increased Hydrogen Binding Energy through Metal Doping STP34, Lueking, Penn State University: Development of Novel Nanoporous Materials for Use as Hydrogen Adsorbents STP35, Neumann, NIST: Neutron Characterization in Support of the Hydrogen Sorption Center of Excellence ST22, Dillon, NREL: Overview of the DOE Hydrogen Sorption Center of Excellence ST26, Dillon, NREL: NREL Research as Part of the Hydrogen Sorption Center of Excellence ST01, Klebanoff, SNL: Metal Hydride Center of Excellence ST03, Kartin, SNL: Discovery and Development of Metal Hydrides for Reversible On-board Storage STP36, Robertson, U of Illinois: Reversible Hydrogen Storage Materials – Structure, Chemistry and Electronic Structure STP37, Brown, ORNL: Metal Borohydrides Borohydrides and Aluminum Hydrides STP38, Reiter, Jet Propulsion Laboratory: Development and Evaluation of Advanced Hydride Systems for Reversible Hydrogen Storage STP39, Chandra, UNR: Effect of Trace Elements on Long-Term Cycling and Aging Properties of Complex Hydrides for Hydrogen Storage STP40, Anton, SRNL: Hydrogen Storage Materials Characterization as Part of the MHCoE STP41, Ahn, California Institute of Technology: Synthesis of Nanophase Materials for Thermodynamically Tuned Reversible Hydrogen Storage STP42, Zhao, OSU: Lightweight Intermetallics for Hydrogen Storage and Development of High Capacity, Reversible Hydrogen Storage Materials Using Boron-Based Metal Hydrides STP43, Goudy, Delaware State University: Center for Hydrogen Storage Research at Delaware State University STP44, Shaw, U of Connecticut: Effects and Mechanisms of Mechanical Activation on Hydrogen Sorption/Desorption of Nanoscale Lithium Nitrides STP45, Miller, SwRI: National Testing Laboratory for Solid-State Hydrogen Storage Technologies STP46, Bhattacharyya, U of Arkansas: An Integrated Approach for Hydrogen Production and Storage in Complex Hydrides of Transitional Elements STP47, Wolverton, Northwestern University: Design of Novel Multi-Component Metal Hydride-Based Mixtures for Hydrogen Storage STP48, Allendorf, Sandia-Livermore: Development of Materials with Tunable Thermodynamics through the Stabilization of Nanosized Particles
3TP49, Anton, SRNL: Fundamental Reactivity Testing and Analysis of Hydrogen Storage Materials & Systems STP50, Mosher, UTRC: Quantifying & Addressing the DOE Material Reactivity Requirements with Analysis & Testing of Hydrogen Storage Materials & Systems STP51, Dedrick, Sandia-Livermore: Chemical and Environmental Reactivity Properties of Metal Hydrides within the Context of Systems STP52, Gogotsi, U of Penn./Drexel Univ.: Carbide-Derived Carbons with Tunable Porosity Optimized for Hydrogen Storage Basic Energy Sciences - Hydrogen Storage BES01, Chen, Florida International University: Influence of Pressure on Physical Property of Ammonia Borane and Its Re-hydrogenation BES02, Gallego, Oak Ridge National Laboratory: Atomistic Mechanisms of Metal-Assisted Hydrogen Storage in Nanostructured Carbons BES03, Larese, Oak Ridge National Laboratory: Application of Neutron Scattering on Hydrogen Storage BES04, Long, Lawrence Berkeley National Laboratory: A Synergistic Approach to the Development of New Classes of Hydrogen Storage Materials BES05, Pecharsky, Ames Laboratory: Complex Hydrides - A New Frontier for Future Energy Applications BES06, Sloan, Colorado School of Mines: Molecular Hydrogen Storage in Novel Binary Clathrate Hydrates at Near-Ambient T&P BES07, Sneddon, University of Pennsylvania: Chemical Hydrogen Storage in Ionic Liquid Media BES08, Van de Walle, University of California, Santa Barbara: Computational Studies of Hydrogen Interactions with Storage Materials BES09, Weitering, Oak Ridge National Laboratory: Quantum Tuning of Chemical Reactivity for Storage and Generation of Hydrogen Fuels BES10, Yildirim, University of Pennsylvania: From Fundamental Understanding to Predicting New Nanomaterials for High-Capacity Hydrogen Storage # Poster Session Guide May 20, Wednesday Poster Session Grand Ballroom | | | | | | | | | _ | |---|------------------|----------------|----------------|-------------------------|----------------|----------------|----------------|---------| | | STP01
STP11 | STP02
STP10 | STP03
STP09 | | STP04
STP08 | STP05
STP07 | ST14
STP06 | | | K | STP12
STP23 | STP13
STP22 | STP14
STP21 | | STP15
STP20 | STP16
STP19 | STP17
STP18 | A | | | | BES01
BES10 | BES02
BES09 | | BES03
BES08 | BES04
BES07 | BES05
BES06 | В | | J | STP24
STP32 | ST15
STP31 | STP25
STP30 | | STP26
STP29 | STP27
STP28 | | 7 | | Н | STP33
STP40 | STP34
STP39 | STP35
STP38 | | ST22
STP37 | ST26
STP36 | ST01
ST03 | <u></u> | | | STP41
STP52 | STP42
STP51 | STP43
STP50 | | STP44
STP49 | STP45
STP48 | STP46
STP47 | С | | | Reviewer
Room | - T | | - -

 | | | | _ | | l | | | | г | | | | _ | # Thursday, May 21 - Poster Presentations Crystal Gateway Hotel - Grand Ballroom, 6-9 PM | Crystal Gateway Hotel - Grand Ballroom, 6-9 PM | |--| | Advanced Power Electronics | | APEP01, Anderson, Ames Lab: High Performance Magnetic Material for Advanced Electric Drives | | APEP02, Burress, ORNL: A New Class of Switched Reluctance (SR) Motors | | APEP03, Burress, ORNL: Benchmarking of Competitive Technologies | | APEP04, Chintivalli, ORNL: Wide Bandgap Materials | | APEP05, Dirk, SNL: High Dielectric Capacitors for Power Electronics | | APEP06, Goodarzi, U.S. Hybrid : Bi-directional dc-dc Converter | | APEP07, Hsu, ORNL: Novel Flux Coupling Machine without Permanent Magnets - U Machine | | APEP08, Su, ORNL: A Segmented Drive System with a Small DC Bus Capacitor | | APEP09, Wiles, ORNL: Direct Cooled Power Electronics Substrate | | Safety, Codes & Standards | | SCSP01, Nakarado, Regulatory Logic: Codes & Standards for the Hydrogen Economy | | SCSP03, Lieberman, Intellegent Optical: Hydrogen Sensors | | Education | | EDP01, Nagle, Lawrence Hall of Science at UC-Berkeley: Hydrogen Technology and Energy Curriculum (HyTEC) | | EDP02, Schmoyer, ORNL: Hydrogen Knowledge and Opinions Assessment | | EDP03, Spruill, NEED: H2 Educate! Hydrogen Education for Middle Schools | | Propulsion Materials | | PMP01, Blau, ORNL: Mechanisms of Oxidation-Enhanced Wear in Diesel Exhaust Valves | | PMP02, Blau, ORNL: Materials for High Pressure Fuel Injection Systems | | PMP04, Erdemir, ANL: Super Hard Coating Systems | | PMP05, Gaines, ANL: Lithium-Ion Battery Recycling Issues | | PMP06, Govindarajan, ORNL: Solder Joint Analysis | | PMP07, Govindarajan, ORNL: Materials for HCCI Engines | | PMP08, Hsu, NETL: Surface Modification GW | | PMP09, Hsu, NETL: IEA Annex on Materials For Transportation support | | PMP10, Lance, ORNL: Materials Issues Associated with EGR Systems | | PMP11, Lin, ORNL: Durability of ACERT Engine Components | | PMP12, Maziasz, ORNL: Materials for advanced engine valve train | | PMP13, Maziasz, ORNL: Materials for Advanced Turbocharger Designs | | PMP14, Narula, ORNL: Catalysts via First Principles | | PMP16, Singh, ANL: Compact Potentiometric NOx Sensor | | PMP17, Singh, ANL: Residual Stress | | PMP18, Sun, ORNL: NDE for ACERT Engine Components | | PMP19, Watkins, ORNL: Catalyst Characterization | | PMP20, Wereszczak, ORNL: Env. Effects on Power Electronic Devices | | PMP21, Singh, ANL: Erosion of Materials by Nano-Fluids | | PMP22, Smith, PNNL: Low Cost Titanium | | PMP23, Anderson, AMES: Magnetic Material for PM motors (AMES) | | PMP24, Allard, ORNL: Charact. of Catalyst Microstructures | | High-Temperature Materials Laboratory | | LMP01, Allard, ORNL: HTML Successes - TBD | | LMP02, Payzant, ORNL: HTML Successes - TBD | | LMP03, Hubbard, ORNL: HTML Successes - TBD | | LMP04, Shyam, ORNL: HTML Successes - TBD | | LMP05, Blau, ORNL: HTML Successes – Selection of a Wear-Resistant Tractor Drivetrain Material | ## Poster Session Guide May 21, Thursday Poster Session Salons B, C, J & H